+-
数据化风控 : 信用评分建模教程
作者: 单良 / 乔杨
出版社: 电子工业出版社
副标题: 信用评分建模教程
出版年: 2018-9-1
页数: 240
定价: 65
装帧: 平装
ISBN: 9787121346293

内容简介  · · · · · ·

随着国内消费金融市场的开放与高度竞争,小贷公司、P2P、消费金融公司,现金贷公司等蜂拥而立,野蛮生长。这些金融产品的共同属性就是放款金额小,审批速度快,规模数量大。不管是申贷时或核拨后,每位客户在不同阶段都有不同的潜在风险,这些风险征兆可能存在于各种令人忽略的细节中,这考验风险控制的执行与管理能力,信用评等模型的精准决策与快速调整,就关乎风险资产品质是好坏的最大关键与命脉。 信用评分模型建立在完整的历史数据上,藉由数据汇整、清理、分群及探勘等技术,将大量数据转化为有用的风险信息,信用评分模型建立后,可将风险数据化,清楚呈现客户的违约率及风险排序,使风险单位得以确切掌握客户风险,并制定更为精准的授信政策。 环顾国内市场具备建模能力的专才供需失衡,特将评分建模过程逐一章节细分介绍,并提供实际案例与读者分享,解开长久以来对建模是个黑盒子的印象。并期盼更多具...

(展开全部)

随着国内消费金融市场的开放与高度竞争,小贷公司、P2P、消费金融公司,现金贷公司等蜂拥而立,野蛮生长。这些金融产品的共同属性就是放款金额小,审批速度快,规模数量大。不管是申贷时或核拨后,每位客户在不同阶段都有不同的潜在风险,这些风险征兆可能存在于各种令人忽略的细节中,这考验风险控制的执行与管理能力,信用评等模型的精准决策与快速调整,就关乎风险资产品质是好坏的最大关键与命脉。 信用评分模型建立在完整的历史数据上,藉由数据汇整、清理、分群及探勘等技术,将大量数据转化为有用的风险信息,信用评分模型建立后,可将风险数据化,清楚呈现客户的违约率及风险排序,使风险单位得以确切掌握客户风险,并制定更为精准的授信政策。 环顾国内市场具备建模能力的专才供需失衡,特将评分建模过程逐一章节细分介绍,并提供实际案例与读者分享,解开长久以来对建模是个黑盒子的印象。并期盼更多具备风险建模的专才加入,具备自我开发建模的能力,让普惠金融更能良性发展。?

作者简介  · · · · · ·

单良,本科毕业于美国纽约哥伦比亚大学,复旦大学、台湾大学EMBA,曾任职于香港维信理财公司、台北富邦银行、中国信托商业银行、澳商澳盛银行及台新银行等机构;兼任台湾金融研训院特约讲师、VISA中国区兼职顾问。具备台湾银行业消费金融风险管理与大陆小贷、P2P风控管理完整资历,长期关注两岸消费金融产业风控管理的发展与创新。曾发表前瞻性评论,并为台湾金融研训院、中国P2P网贷实务研修班授课。著作有《信用评等模型关键12堂课》《互联网金融时代消费信贷评分建模与应用》。

乔杨 ZRobot CEO。曾担任知名互联网金融公司联合创始人兼风险官,美国发现金融芝加哥总部担任风险策略及模型业务高级经理,发现金融上海大数据风控中心风控策略及大数据建模业务负责人。曾参与美国通用电气公司财务管理领导力项目(FMP),研究商品期货和货币的对冲策略。他拥有美国爱荷华大学经济学及M...

(展开全部)

单良,本科毕业于美国纽约哥伦比亚大学,复旦大学、台湾大学EMBA,曾任职于香港维信理财公司、台北富邦银行、中国信托商业银行、澳商澳盛银行及台新银行等机构;兼任台湾金融研训院特约讲师、VISA中国区兼职顾问。具备台湾银行业消费金融风险管理与大陆小贷、P2P风控管理完整资历,长期关注两岸消费金融产业风控管理的发展与创新。曾发表前瞻性评论,并为台湾金融研训院、中国P2P网贷实务研修班授课。著作有《信用评等模型关键12堂课》《互联网金融时代消费信贷评分建模与应用》。

乔杨 ZRobot CEO。曾担任知名互联网金融公司联合创始人兼风险官,美国发现金融芝加哥总部担任风险策略及模型业务高级经理,发现金融上海大数据风控中心风控策略及大数据建模业务负责人。曾参与美国通用电气公司财务管理领导力项目(FMP),研究商品期货和货币的对冲策略。他拥有美国爱荷华大学经济学及MBA双硕士学位,芝加哥大学计算机科学硕士学位,SAS认证师,Teradata认证SQL专家,微软认证系统工程师(MCSE)等。

目录  · · · · · ·

第一章 信用评分基础认识与应用 /001
第一节 信用评分卡简介 /003
第二节 评分卡建立与验证 /008
第三节 评分应用 /026
第二章 信用评分模型规格与设计 /031
第一节 数据收集、质量检验 /031
· · · · · · ( 更多)
第一章 信用评分基础认识与应用 /001
第一节 信用评分卡简介 /003
第二节 评分卡建立与验证 /008
第三节 评分应用 /026
第二章 信用评分模型规格与设计 /031
第一节 数据收集、质量检验 /031
第二节 应排除的数据样本 /033
第三节 样本期间、好坏客户定义 /034
第四节 范例 /039
第三章 分组(Segmentation)目的与分析选择 /041
第一节 分组目的 /041
第二节 分组分析 /043
第三节 范例 /046
第四章 细致分析与自变量分析 /049
第一节 细致分类(Fine Classing) /051
第二节 范例 /052
第三节 单因子分析(Single Factor Analysis) /057
第四节 粗略分类(Coarse Classing) /064
第五节 范例 /065
第五章 模型建立方法讨论 /071
第一节 线性回归(Linear Regression) /073
第二节 逻辑回归(Logistic Regression) /077
第三节 两阶段式建立方法 /082
第四节 初始模型讨论 /084
第五节 范例 /085
第六章 拒绝推论(Reject Inference)的原因与方法 /089
第一节 拒绝推论的原因 /090
第二节 拒绝推论的方法 /092
第七章 最终模型选择与风险校准(Calibration) /099
第一节 最终模型产出 /101
第二节 设定风险校准(Risk Calibration) /105
第三节 模型验证 /109
第八章 决策点(Cut-off)设定 /115
第一节 决策点策略设定方式 /116
第二节 核准点应用方式 /118
第三节 范例 /119
第九章 信用评分模型监控报告 /123
第一节 前端监控报告 /126
第二节 后端监控报告 /135
第十章 信用评分模型策略运用 /151
第一节 业务策略制订方式 /152
第二节 业务策略应用方式 /154
第三节 范例 /158
第十一章 信用评分模型案例(消费产品分期) /161
第一节 数据样本 /162
第二节 样本好坏表现定义 /163
第三节 变量分析 /167
第四节 模型建立与验证 /170
第十二章 信用评分模型案例(现金贷) /173
第一节 数据样本 /174
第二节 样本好坏表现定义 /175
第三节 变量分析 /176
第四节 模型建立与验证 /178
第十三章 催收框架 /183
第一节 催收管理流程 /185
第二节 催收管理系统简介 /190
第三节 催收模型系统 /191
第四节 催收策略系统 /195
第十四章 催收技巧及KPI标准 /213
· · · · · · ( 收起)

> 更多短评 16 条